La manutenzione predittiva, secondo un recente report di Market Research Future, rappresenta un mercato in forte crescita che dovrebbe superare i 23 miliardi di dollari entro il 2025.

Si tratta di un settore in forte espansione parte del più ampio mercato del Digital Manufacturing, presente già dagli anni ’90 e che, in linea di massima, può essere definito come un approccio integrato alla produzione incentrato su un sistema informatico-digitale. Oggi siamo forse più abituati a sentire il termine Smart Manufacturing (o fabbrica intelligente) che, di fatto, racchiude l’essenza evolutiva stessa del segmento manifatturiero attraverso percorsi di trasformazione digitale che innervano i sistemi produttivi e logistici – e le filiere ad essi connessi – di tecnologie innovative.

In generale oggi identifichiamo il Digital Manufacturing come il processo di produzione digitalizzato (che richiede un intervento minimo dell’essere umano lungo la catena di produzione che viene avviata e gestita direttamente dalle macchine e dai sistemi informatici).

Quando parliamo di Smart Manufacturing, invece, ci riferiamo ormai a qualcosa di molto più ampio che afferisce ad una vera e propria rivoluzione dei processi, dei modi e dei tempi della produzione attraverso l’utilizzo congiunto ed esteso di diverse tecnologie digitali, spesso raggruppate sotto il cappello dell’Industria 4.0.

In questo ambito ricade la manutenzione predittiva che possiamo identificare come una strategia di manutenzione guidata dalle tecnologie di analisi predittiva.

 

Cos’è e cosa significa manutenzione predittiva

 

La manutenzione predittiva è un tipo di manutenzione preventiva (vedremo poi la differenza tra le due) che sfrutta tecniche (e tecnologie) progettate per aiutare a determinare le condizioni delle apparecchiature in servizio al fine di stimare (e prevedere) quando è necessario eseguire la manutenzione, prima che si verifichino fermi o guasti che potrebbero avere conseguenze dirette sui processi produttivi.

La manutenzione predittiva viene effettuata attraverso l’identificazione di determinati parametri che vengono monitorati, misurati ed analizzati – utilizzando appropriati algoritmi e modelli matematici – con l’obiettivo di determinare il cosiddetto “tempo residuo” prima di un fermo, un guasto o un possibile problema e, in base a tale tempo, capire quand’è il momento migliore per intervenire minimizzando i rischi per la produzione e per il business.

È evidente che il vantaggio primario della manutenzione predittiva è consentire una efficace programmazione della cosiddetta “manutenzione correttiva” e di prevenire guasti imprevisti ai macchinari utilizzati nei processi produttivi e logistici.

 

Manutenzione preventiva e manutenzione predittiva, che differenze ci sono?

 

La manutenzione preventiva e la manutenzione predittiva sono due facce della stessa medaglia (entrambe sono strategie efficaci per la manutenzione degli asset), ma differiscono nelle modalità (e nelle tecniche) di attuazione.

La manutenzione preventiva implica un monitoraggio sistematico delle risorse con interventi costanti di manutenzione ordinaria per prevenire tempi di inattività imprevisti o guasti. A differenza della manutenzione reattiva (o correttiva) – in cui il servizio di manutenzione avviene dopo che l’asset ha funzionato male o si è guastato – la manutenzione preventiva richiede l’esecuzione della manutenzione prima che qualsiasi cosa funzioni male.

Per riuscire a fare questo tipo di manutenzione, solitamente, ci si affida a parametri quali il tempo (tra un intervento di manutenzione ordinaria ed un altro, oppure in base alle ore di utilizzo o ai chilometri percorsi), le condizioni fisiche degli asset e la scoperta di qualche prova fisica che minaccia il malfunzionamento di un asset.

La manutenzione predittiva sfrutta invece le analisi avanzate dei dati per prendere decisioni più efficaci e consapevoli: la manutenzione predittiva implica l’analisi dell’effettivo utilizzo di un asset per decidere quando eseguire la manutenzione.

Anche nella manutenzione preventiva si sfruttano tecnologie di analisi ma di tipo descrittivo, che consentono un’analisi dei dati storici per fare ipotesi statistiche. La manutenzione predittiva differisce invece dalla manutenzione preventiva perché si basa sulle condizioni effettive delle apparecchiature (sfruttando analisi di tipo predittivo), piuttosto che sulle statistiche sulla vita media o prevista, per prevedere quando sarà necessaria la manutenzione.

In una strategia di manutenzione predittiva si utilizzano sia i dati storici sia quelli attuali (spesso in real-time) sulle prestazioni degli asset per determinare quando è probabile che si verifichi un malfunzionamento e quindi eseguire la manutenzione in anticipo.

 

Digital manufacturing: come fare manutenzione predittiva degli impianti

 

La manutenzione predittiva basata sulle condizioni e le prestazioni reali degli asset si basa su diversi elementi chiave:

  • – acquisizione dei dati;
  • – elaborazione dei dati;
  • – processo decisionale di manutenzione.

La manutenzione predittiva si basa dunque su apparecchiature di monitoraggio delle condizioni degli asset e degli impianti per valutare le prestazioni delle risorse in tempo reale. Grazie alla combinazione di analisi/diagnosi basate su condizioni con formule predittive e ai dati raccolti “sul campo” grazie alle tecnologie dell’Internet of Things (IoT), la manutenzione predittiva crea uno strumento preciso per la raccolta e l’analisi dei dati degli asset. Questi dati consentono di identificare eventuali aree che necessitano o necessiteranno di attenzione e/o intervento.

In linea di massima possiamo dire che acquisendo i dati attraverso una distribuzione a livello di fabbrica/impianti delle tecnologie IoT (in particolare di sensori), i dati vengono acquisiti per l’analisi.

Questi dati vengono poi raccolti in un Data Hub e messi a disposizione dei sistemi di analisi (che si basano su modelli matematici di tipo predittivo e consentono di fare analisi avanzate, oggi anche sfruttando tecnologie innovative come il Machine Learning).

Infine, l’analisi predittiva restituisce informazioni che consentono di accelerare, rendere efficaci e persino automatizzare le decisioni ed i processi di manutenzione in un “regime predittivo” che riduce i tempi di fermo e i costi e consente di inserire la manutenzione all’interno dei normali processi produttivi invece di essere una barriera o un “male necessario”.

Come ogni altra strategia di manutenzione proattiva, la manutenzione predittiva mira a:

  • – ridurre al minimo il numero di guasti imprevisti e massimizzare il tempo di attività delle risorse che ne migliora l’affidabilità;
  • ridurre i costi operativi ottimizzando il tempo speso per i lavori di manutenzione (in altre parole, fare la manutenzione solo quando è doverosa elimina praticamente ogni possibilità di perdere tempo a fare manutenzione non strettamente necessaria);
  • migliorare i profitti riducendo i costi di manutenzione a lungo termine e massimizzando le ore di produzione.

 

New call-to-action

Approfondimenti da BNext:

Cosa sono e come funzionano i sistemi di raccomandazione 

Prima della diffusione di internet e dei motori di ricerca, trovare informazioni utili ad uno specifico argomento o contesto era molto difficile, richiedeva tempo, ricerche lunghe e faticose, e spesso risultava costoso in quanto non era inusuale dover acquistare libri...

Datafication: cos’è e che impatto ha sulla nostra vita quotidiana

Cos’è la Datafication e perché se ne parla  Per datafication si intende tutto il processo tecnologico che trasforma i vari aspetti della vita quotidiana, sociale ed individuale di ogni persona in dati i quali, opportunamente trattati ed analizzati, si trasformano...

Ottimizzare la customer care: le tecniche di profilazione, dal clustering alle analisi RFM 

Partiamo dal presupposto che mantenere i propri clienti sia meno costoso e più remunerativo di doverne trovare di nuovi. Per trovare clienti nuovi sono infatti necessarie strategie ed azioni che risultano essere anche 6-7 volte più costose rispetto al lavoro...

Industria 4.0 e strategie di manutenzione: le differenze tra manutenzione reattiva, preventiva e predittiva 

Per comprendere al meglio le caratteristiche e le potenzialità dell’Industria 4.0 è importante fare chiarezza sul mix tecnologico e di conoscenze che hanno portato dall’Industry 1.0, rivoluzione della manifattura grazie all’energia meccanica, fino all’Industry 2.0,...

Pre-vedere per meglio decidere: IoT e analytics per la gestione di processi event-driven 

I sistemi IoT fanno parte di tutte quelle tecnologie riconosciute come abilitanti per l’Industry 4.0, in grado di abilitare l’interconnessione dei servizi e fornire la possibilità di gestire processi e risorse in modo intelligente e consapevole. Si tratta di sistemi...

La matematica a servizio della finanza

Quando si parla di finanza le attività che vengono in mente sono di vario tipo: valutazione delle attività finanziare e assicurative, misurazione del rischio di prodotti finanziari, studio di tecniche di copertura del rischio con strumenti di ottimizzazione,...

Fare ordine tra i dati: dalla Data Quality alla Data Governance 

Mettere ordine tra i propri dati aziendali è il primo passo, lo step fondamentale per riuscire a governarli e ad utilizzarli nel modo più opportuno e proficuo per l’azienda.   Diamo qui per scontato che i dati aziendali siano “sporchi” per natura, perché...

Dati statici e dinamici: quali sono le differenze?

La contrapposizione tra i concetti di “statico” e “dinamico” è da sempre presente in tantissimi settori ed ambiti, compreso quello informatico. Si parla ad esempio di statico/dinamico in ambito economico rispetto all’impostazione dei prezzi, ma anche in relazione alla...

Cos’è e come viene condotta l’analisi dei dati?

L’analisi dei dati non è sempre stata come la intendiamo oggi, ma è frutto di molti anni di evoluzione. I primi passi risalgono all’esplosione della Business Intelligence, attività che ha aperto la strada  a questo tipo di analisi perché ha permesso agli utenti...

BNova e DAMA: una nuova collaborazione per ampliare gli orizzonti del Data Management

Si amplia la rete di collaborazioni che contraddistingue l’operato di BNova. Siamo molto entusiasti nell’annunciare la nostra adesione a DAMA Italy, Chapter italiano dell'International Data Management Association. L'associazione promuove la conoscenza della cultura...